首页> 外文OA文献 >Adsorption-Induced Slip Inhibition for Polymer Melts on Ideal Substrates
【2h】

Adsorption-Induced Slip Inhibition for Polymer Melts on Ideal Substrates

机译:吸附诱导滑爽抑制聚合物熔体在理想基材上的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hydrodynamic slip of a liquid at a solid surface represents a fundamentalphenomenon in fluid dynamics that governs liquid transport at small scales. Forpolymeric liquids, de Gennes predicted that the Navier boundary conditiontogether with the theory of polymer dynamics imply extraordinarily largeinterfacial slip for entangled polymer melts on ideal surfaces; this Navier-deGennes model was confirmed using dewetting experiments on ultra-smooth,low-energy substrates. Here, we use capillary leveling - surface tension drivenflow of films with initially non-uniform thickness - of polymeric films onthese same substrates. Measurement of the slip length from a robustone-parameter fit to a lubrication model is achieved. We show that at the lowershear rates involved in leveling experiments as compared to dewetting ones, theemployed substrates can no longer be considered ideal. The data is insteadconsistent with physical adsorption of polymer chains at the solid/liquidinterface. We extend the Navier-de Gennes description using one additionalparameter, namely the density of physically adsorbed chains per unit surface.The resulting formulation is found to be in excellent agreement with theexperimental observations.
机译:液体在固体表面的流体动力学滑移代表了流体动力学的基本现象,该现象控制着小规模的液体运输。对于一种聚合液体,de Gennes预测,Navier边界条件与聚合物动力学理论共同暗示了缠结的聚合物熔体在理想表面上的界面滑移非常大。该Navier-deGennes模型是在超光滑,低能量的基材上进行的去湿实验证实的。在这里,我们在这些相同的基材上使用毛细管流平-聚合物膜的表面张力驱动的初始厚度不均匀的膜流。实现了从鲁棒性参数拟合到润滑模型的滑移长度测量。我们表明,与流平实验相比,在流平实验中所涉及的剪切率较低时,使用的基材不再被认为是理想的。相反,该数据与聚合物链在固/液界面处的物理吸附一致。我们使用另外一个参数扩展了Navier-de Gennes的描述,即每个单位表面物理吸附链的密度。发现所得的配方与实验观察结果非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号